A review of machine learning in dynamic scheduling of flexible manufacturing systems
نویسندگان
چکیده
A common way of dynamically scheduling jobs in a flexible manufacturing system (FMS) is by means of dispatching rules. The problem of this method is that the performance of these rules depends on the state the system is in at each moment, and no single rule exists that is better than the rest in all the possible states that the system may be in. It would therefore be interesting to use the most appropriate dispatching rule at each moment. To achieve this goal, a scheduling approach which uses machine learning can be used. Analysing the previous performance of the system (training examples) by means of this technique, knowledge is obtained that can be used to decide which is the most appropriate dispatching rule at each moment in time. In this paper, a review of the main machine learning-based scheduling approaches described in the literature is presented.
منابع مشابه
Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملScheduling of flexible manufacturing systems using genetic algorithm: A heuristic approach
Scheduling of production in Flexible Manufacturing Systems (FMSs) has been extensively investigated over the past years and it continues to attract the interest of both academic researchers and practitioners. The generation of new and modified production schedules is becoming a necessity in today’s complex manufacturing environment. Genetic algorithms are used in this paper to obtain an initial...
متن کاملA Hierarchical Production Planning and Finite Scheduling Framework for Part Families in Flexible Job-shop (with a case study)
Tendency to optimization in last decades has resulted in creating multi-product manufacturing systems. Production planning in such systems is difficult, because optimal production volume that is calculated must be consistent with limitation of production system. Hence, integration has been proposed to decide about these problems concurrently. Main problem in integration is how we can relate pro...
متن کاملTwo-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملMULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملRole of batch size in scheduling optimization of flexible manufacturing system using genetic algorithm
Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality. At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’ orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several factors including arrival rate, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AI EDAM
دوره 15 شماره
صفحات -
تاریخ انتشار 2001